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ABSTRACT 

We prove that  a Markov operator  T on L1 has an invariant density if and 

only if there exists a density f that  satisfies l imsupn_+~ I ITnf  - f l l  < 

2. Using this result, we show that  a Frobenius-Perron operator  P is 

mean ergodic if and only if there exists a density w such that  

lim SUpn_+o o I lPn f  - wll < 2 for every density f .  Corresponding results 

hold for strongly continuous semigroups. 

1. N o t a t i o n s  

Let (~t, E, #) be a a-finite measure space. Given a set X E E, we will denote by 

"~x the function which is equal to 1 on X and 0 on f2 - X.  By 79 denote the set 

of all d e n s i t i e s  on f2, i .e. ,  

---- { f  e Ll(~2) : f > 0, Ilfll -- 1}, 

where I1' II is the norm in LI(Q) .  A linear operator  T: Ll(f~) --+ L1(~2) is called 

the M a r k o v  o p e r a t o r  if T(79) C_ 79. Let us fix a notat ion 

T :=  (Tt)t~j, where J - -  N or J = ~ _ ,  

for a one-parameter  M a r k o v  s e m i g r o u p ,  which means that  T consists of 

Markov operators.  In the case of d = 51, we will say that  T is d i s c r e t e ,  and in 
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the case of J = R+ we always assume that 7- is s t r o n g l y  con t inuous .  Let us 

denote by 
l r - 1  

A~(T) := ~ E Tk (whenever ~- e J := N) 
k=0 

and 1// 
A~(T) := - Ttdt (whenever T C J := ]I~+) v 

the Cesh ro  m e a n s  of the semigroup T, and recall that T is m e a n  e rgod ic  if 

the norm limit l i m t - ~  J [ t (T ) f  exists for all f E Ll(~t). It is well known that 

[[. [I-l imt-~ A t ( T ) f  exists for an f c LI(~t), whenever the set { A t ( T ) f } t e j  is 

conditionally weakly compact. T is called weak ly  a l m o s t  p e r i o d i c  whenever 

the orbit {Ttf} tEJ is conditionally weakly compact for each f E L1 (~). Clearly, 

any weakly almost periodic semigroup is mean ergodic. A density f is called 7-- 

invar iant  if Tt f  = f for all t C J. Of course, f E 7) is 7--invariant for a discrete 

semigroup T = (Tn)n~=l if and only if it is T - inva r i an t  for a single operator T, 

i.e., T f  -- f .  It follows easily from weak compactness of any set of the kind 

{ 0 _ < f _ < u : f c L t ( ~ ) }  (uCLI(YI))  

that a Markov semigroup T is weakly almost periodic, provided the condition 

that 7- possesses an invariant density u which satisfies u(x) > 0 a.e. on ft. 

2. E x i s t e n c e  o f  a n  invar iant  d e n s i t y  

The problem of existence of invariant densities is one of the central problems 

in the theory of Markov operators. There are many results in this direction 

[HK], [Su], [Kr, $3.4], [So], etc. Here we present a criterion for the existence of 

an invariant density which seems to be rather simple for applications. It will 

be used to obtain a condition for the mean ergodicity of the Frobenius-Perron 

semigroup. 

THEOREM 1 : For a Markov semigroup T ,  the following conditions are equivalent: 

(i) T has an invariant density; 

(ii) limsupt_,o ~ I[f - Ttf][ < 2 for some density f ;  

(iii) l imsupt_,~ [[d - Ttg][ < 2 for some pair of densities d, g. 

Proof'. (i) =~ (ii) ==~ (iii) is trivial, and for the proof of (iii) ~ (ii) it is enough 

to pick f = (d + g)/2. 
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(ii) =* (i): We remark that from the equality l[f -g l l  = Ilfll + llgll- 21if AgII, 
which holds for all f ,g E L+(f2), it follows that (ii) is equivalent to 

(1) (3f C V) lira inf IIf A T~flt > O. 

Thus we may assume that  condition (1) holds for a density f .  

(I) First we consider the discrete case T = (Tn)~_l. Without any loss of 

generality we may assmne that f E L~(f2). Applying [Kr, Thm. 3.4.6] to T, 

we obtain the decomposition of [2 into two disjoint sets C, D that satisfy the 
following properties: 

(*) there exists a p E L+(f~) with Tp = p and C = {p > 0}, and 
(**) there exists a weakly wandering h C L+(f~) with D = {h > 0}. 

It is enough to show that p # O. Let II Ev%l T*k"hl]~ < c~ for some strictly 
increasing sequence k, of naturals (such a sequence exists in view of the weakly 

wandering of h). Given s > O, set At := {h _> s}; then 
cX3 

E ]IXA~" (f  A Zk"/)ll _< ~ I['~A," Tk'fll 
v,=l v= l  

=fA Z: se" 
¢ v = l  

P ~ O  

_<~-~ [ h. 
Jr2 v'-.~.| 

( ) )  =s-a T*k~h (f) 

oc h oc _<:1.  Ilfll" ~ r  *k° < oc, 

and consequently, lim,__,~ II~A~ " (f A Zk~f)l I = 0 for all e > 0. Now in view of 

At ? D (e $ 0), we obtain that l i m , _ ~  II~D" ( f  A Tk~f)ll = 0, and 

lim sup f fATk" fdp  _>lim sup f f A T k " f d p  - lira II~o" (fATk~f)II 

>lira inf I [ f A T n f l l > 0 .  
n - - ~ o o  

In particular, the set C has a positive measure. Thus p # 0 and w = IlPl[-lp is 

an invariant density of T. 

(II) Now let T = (Tt)t>_o be a strongly continuous Markov semigroup. Set 
T = T1; then condition (1) implies that 

lim inf Ill A Tnfll > O, 
9 / - - + 0 0  
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and from part (I) of the proof it follows that there exists a density u I such that 

Tu l  = ul .  Clearly 

u := Ttuldt  

is a T-invariant density, since 

fO fl+s u = Ttuldt  = Ttuldt  = Tsu(Vs >_ 0). | "IS 

3. Weak almost periodicity of  bounded semigroups on L1 

The rather surprising fact, that  any mean ergodic Markov semigroups is weakly 

almost periodic, was obtained recently by Komornik [Ko, Prop. 1.4(i)] and in- 

dependently by Kornfeld and Lin [KL, Thm. 1.2] for discrete semigroups. We 

extend the result to bounded semigroups, with a different idea for the proof. 

THEOREM 2: Any  mean ergodic bounded semigroup of positive operators 7" on 

Lt  is weakly almost periodic. 

In the proof below, we will use the following simple inequality: 

(2) inf{l[(lt : ~ • E} _< IlfI[ ( v / •  ~6(E)), 

which is true for any E c_ L+(f~), due to additivity of the norm on L+(f~). 

Proof: It is enough to show that the orbit {T t f } t cg  is conditionally weakly 

compact for all f • L+(ft).  

Fix an f C L+(f~) and let u := limt-+ocAt(T)f.  If u = 0, set Q = I := 

Idlcl(n).  If u ¢ 0, take the u-support projection P = P~: 

Pug--  ~{u>o}'g (Vg • n l ( a ) ) .  

It is clear that P satisfies 0 _< P _< I, and T t P =  P T t P  since Ll({U > 0}) is 

T-invariant. Set Q = I - P and notice that QTt = QTtQ for all t • J.  

Since l imt_~  I lu-  A t ( T ) f l l  = 0 and q u  = O, we have limt-~oo NQAt(T) f l l  = O. 

Applying the inequality (2) to the set E := {QTt f } t eJ ,  we obtain that 

IIQTn, fll -~ 0 (i ~ oc) 

for some increasing sequence (hi), and consequently 

lim sup IlQTtfl] = lira sup IlQTtTn~fll 
t - - + o o  t---~oo 

= lim sup IIQT~QT,~fll 
t ---~oo 

<supllZtll . IIQZn, fll --+ 0 (i --+ ec). tEJ 



Vol. 136, 2003 INVARIANT DENSITIES  AND MEAN E R G O D I C I T Y  377 

Thus limt--,~ [IQTtf[[ = 0. In the case u = 0, the proof  is finished already, since 
OO 

Q = I .  Let u ¢ 0. The set Ul=l[-lu, lu] is norm-dense in L~({u > 0}) = 

P(Ll(ft)). By invariance of 'u 

Tt([-lu, lu]) C_ [-lu, lu] (Vt e J) ,  

and since T is bounded,  for each e > 0, there exists l~ such tha t  

lira sup dist(Ttf, [-lu, lu]) = lira sup dist(PTtf, [ - / u ,  In]) <_ 
t--+oo t --~oo 

for all /  > lz. Henceforth {Ttf}ted is conditionally weakly compact ,  since I-l u, lu] 
is weakly compact  and since ~ > 0 was chosen arbitrary. | 

4. Weak almost  p e r i o d i c i t y  for  Froben ius -Perron  semigroups 

We start  with the following definitions. A t ransformat ion v: f~ -+ ft is called 

measurable  if r -  1 (A) c E for all A c E. A measurable t ransformat ion r :  ft -+ ft 

is called nonsingular if f l ( r - l ( A ) )  = 0 for all A E E such tha t  if(A) = 0. It  fol- 

lows from the Radon Nikodim theorem that  for any nonsingular t ransformat ion 

r the equality 

/ A P f d p =  / '  fd  t, ( A C E )  
-I(A) 

defines a unique operator  P on LI(i~), which is called the Froben ius -Perron  

operator  corresponding to r. It is easy to see tha t  any Frobenius Perron oper- 

a tor  is a Markov operator.  When a semigroup (rt)t~j of nonsingular t ransforma- 

tions on (~L E, it) is given, (PT~)teJ is called a Froben ius -Perron  semigroup.  

Let now 7 ~ = (P~) t~ j  be a discrete or a strongly continuous Frobenius Perron 

semigroup, associated with a senfigroup (~-t)tc.l of nonsingular t ransformations 

rt: ft -+ t2. We apply Theorem 1 to obtain the following criteria of the mean 

ergodicity of P .  

THEOREM 3: For a Frobenius- Perron semigroup 7 ) the following conditions are 

equivalent: 
(i) 7 ~ is weakly almost periodic; 
(ii) P is mean ergodic; 
(iii) there exists a density w such tha t  l imsup t4o  o I l P ~ , f  - wll < .2 for every 

density f .  

Proof: The equivalence (i) ¢:> (ii) follows from Theorem 2. 
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(ii) ~ (iii): Take a density d such tha t  d(x) > 0 a.e. on f~; then the density 

w = limt--,oo At(7))d satisfies (iii). Indeed, let f E 79; then 

inf I I A t ( 7 ) ) f -  wll < lira I I A t ( 7 ) ) ( f -  d)ll <_ I l l -  dll < 2. 
t --+oo 

Since .At(7))f E "C6{Prtf : t E J}, the inequality above shows tha t  there exists 

an element a E co{P~, f  : t C J}  with Ila - wll < 2 an d  hence IIP~,o - wll < 2 for 

some to E J .  But  then 

l im sup I I P ~ , f  - wll = l im sup IlPT~(Prtof - w)ll ~ IIP~, o - wll < 2, 
t--+oo 8-+oo 

which is wha t  is required. 

(iii) =* (ii): Denote  by 79r~ the set of  all 7)-invariant densities. Take a finite 

measure  tq  which is equivalent to the initial a-finite measure  # on ft. 79;0 is not 

emp ty  by Theorem 1, so we can define 

a := s u p { # , ( E )  : E = {d > 0} for some d E Dp}, 

and 0 < a < oo. Let (dn)~-i be in 79p with # l ( { d ,  > 0}) --4 a .  Pu t  a = 

~n~__l 2-ndn, and denote A = {a > 0}. Then  a E 79p and p,(A) = a, i.e., a is 

an invariant  density with max imal  suppor t .  Let A1 = UrEa "ri-l(A) • Obviously 

rt(A1) C_ A1 for a n y t  E J .  But  B : =  f t - A 1  = {x : rtx ~ AVt E J} is also 

obviously invariant.  Hence LI(B) is invariant for all P~,. By (iii), k s  ~ 0, so 

Theorem 1 yields a density suppor ted  in B invariant for all P~,, which contradicts  

max imal i ty  of A. Hence f~ = (-JtEJ r t - l (A)  • 

Since, obviously, rt(A) c A for all t E J ,  we obtain  

(3) lim ja P~-,fd# = lim [ fd# = 0 (Vf E 7)). 
t--+oo - A  t-+°° Ja--r~- l  (A) 

On the other  hand, the restr ict ion PIL~(A) of 7 ) on LI (A)  is mean  ergodic, since 

the semigroup 7)IL, (A) has the a lmost  everywhere positive (on the set A) invariant 

density a. Consequently,  (3) implies tha t  7) is mean  ergodic. | 

We remark  tha t  the implicat ion (i) ¢~ (ii) => (iii) is t rue for any Markov 

semigroup.  The  following example  of Komorn ik  [Ko, Example  4.1] shows tha t  

the implicat ion (iii) => (ii) does not hold in general. 

Example: Let gt = N, and let E be the algebra of all subsets  of N and # be the 

counting measure.  Thus  Ll ( f t )  = ~1. Define an opera tor  T on C 1 as follows: 

Tek+l:=2 - k . e l + ( 1 - 2  -~:) .ek+2 (Vk>_0).  
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So the defined Markov semigroup T = (Tn)~- t  obviously satisfies the condition 

(iii) of Theorem 3 with w = el. But it is easy to see that  for any density d the 

sequence ( ± 7z- 1 ~ T d)n=l converges only if d is equal to el. In particular, T is E i=0  i oc 

not mean ergodic. 
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